Acyclic Vertex Coloring of Graphs of Maximum Degree
نویسندگان
چکیده
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of graph G = (V,E). For a family F of graphs, the acyclic chromatic number of F , denoted by a(F), is defined as the maximum a(G) over all the graphs G ∈ F . In this paper we show that a(F) = 8 where F is the family of graphs of maximum degree 5 and give a linear time algorithm to achieve this bound.
منابع مشابه
k-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملAcyclic vertex coloring of graphs of maximum degree 5
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of a graph G = (V,E). For a family F of graphs, the acyclic chromatic number of F , denoted by a(F ), is defined as the maximum a(G) over all the graphs G ∈ F . In this p...
متن کاملMinimum feedback vertex set and acyclic coloring
In the feedback vertex set problem, the aim is to minimize, in a connected graph G = (V ,E), the cardinality of the set V (G)⊆ V , whose removal induces an acyclic subgraph. In this paper, we show an interesting relationship between the minimum feedback vertex set problem and the acyclic coloring problem (which consists in coloring vertices of a graph G such that no two colors induce a cycle in...
متن کاملAcyclic coloring of graphs with maximum degree five
An acyclic k-coloring of a graph G is a proper vertex coloring of G which uses at most k colors such that the graph induced by the union of every two color classes is a forest. In this paper, we mainly prove that every 5-connected graph with maximum degree five is acyclically 8-colorable, improving partially [5].
متن کاملA new approach to compute acyclic chromatic index of certain chemical structures
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...
متن کامل